Search results for "subependymal zone"

showing 10 items of 24 documents

Isolation, culture and analysis of adult subependymal neural stem cells

2016

Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the id…

0301 basic medicineCancer ResearchNeurogenesisCellular differentiationBasic fibroblast growth factorPopulationCell Culture TechniquesBiologyMice03 medical and health scienceschemistry.chemical_compoundNeural Stem CellsEpendymaNeurosphereSubependymal zoneAnimalsHumanseducationMolecular BiologyNeuronseducation.field_of_studyNeurogenesisCell DifferentiationCell BiologyNeural stem cellCell biologyAdult Stem Cells030104 developmental biologychemistryImmunologyDevelopmental BiologyAdult stem cellDifferentiation
researchProduct

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

2016

Relatively quiescent somatic stem cells support life-long cell renewal in most adult tissues. Neural stem cells in the adult mammalian brain are restricted to two specific neurogenic niches: the subgranular zone of the dentate gyrus in the hippocampus and the ventricular-subventricular zone (V-SVZ; also called subependymal zone or SEZ) in the walls of the lateral ventricles. The development of in vivo gene transfer strategies for adult stem cell populations (i.e. those of the mammalian brain) resulting in long-term expression of desired transgenes in the stem cells and their derived progeny is a crucial tool in current biomedical and biotechnological research. Here, a direct in vivo method …

0301 basic medicineEpendymal CellNeurogenesisGeneral Chemical EngineeringGenetic VectorsStem cellsBiologyTransfectionGeneral Biochemistry Genetics and Molecular BiologySubgranular zoneMice03 medical and health sciencesSubependymal zoneNeural Stem CellsEpendymal cellEpendymaLateral VentriclesDevelopmental biologyNichemedicineSubependymal zoneAnimalsNeurogeneticsGeneral Immunology and MicrobiologyLateral ventricleGeneral NeuroscienceLentivirusNeurogenesisGene Transfer TechniquesBrainNeural stem cellCell biology030104 developmental biologymedicine.anatomical_structureVentricular-subventricular zonenervous systemNeural stem cellIssue 108NeurogenèticaStem cellCèl·lules mareDevelopmental biology; Ependymal cell; Issue 108; Lateral ventricle; Lentivirus; Neural stem cell; Neurogenesis; Niche; Subependymal zone; Ventricular-subventricular zone; Animals; Brain; Ependyma; Lateral Ventricles; Lentivirus; Mice; Neural Stem Cells; Transfection; Gene Transfer Techniques; Genetic VectorsDevelopmental biologyNeuroscienceAdult stem cellJournal of Visualized Experiments
researchProduct

Characterization of the canine rostral ventricular-subventricular zone: Morphological, immunohistochemical, ultrastructural, and neurosphere assay st…

2017

The mammalian ventricular-subventricular zone (V-SVZ) presents the highest neurogenic potential in the brain of the adult individual. In rodents, it is mainly composed of chains of neuroblasts. In humans, it is organized in layers where neuroblasts do not form chains. The aim of this study is to describe the cytoarchitecture of canine V-SVZ (cV-SVZ), to assess its neurogenic potential, and to compare our results with those previously described in other species. We have studied by histology, immunohistochemistry (IHC), electron microscopy and neurosphere assay the morphology, cytoarchitecture and neurogenic potential of cV-SVZ. Age groups of animals were performed. Histological and ultrastru…

0301 basic medicineMalePathologymedicine.medical_specialtyanimal diseasesSubventricular zoneBiology03 medical and health sciences0302 clinical medicineDogsNeuroblastNeural Stem CellsSpecies SpecificityNeurospheremedicineSubependymal zoneAnimalsStem Cell NicheCells CulturedGeneral NeuroscienceNeurogenesisBrainHistologyImmunohistochemistryMicroscopy Electron030104 developmental biologymedicine.anatomical_structurenervous systemCytoarchitectureImmunohistochemistryFemale030217 neurology & neurosurgeryThe Journal of comparative neurology
researchProduct

Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells.

2018

Synaptic protein -synuclein (-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinsons disease. Here, we report that -SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also showthat premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking-SYN resemblesthe effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic -SYN. Interestingly…

0301 basic medicineMaleanimal diseases[SDV]Life Sciences [q-bio]DopamineNeurogenesisRegulatorniche biologyBiologyNeurotransmissionenvironment and public health03 medical and health scienceschemistry.chemical_compoundstemnessMice0302 clinical medicineNeural Stem CellsDopaminemedicineSubependymal zoneAnimalsHumansheterocyclic compoundsNeurons AfferentStem Cell NicheResearch ArticlesparkinsonismCellular SenescenceGeneral NeuroscienceMPTPDopaminergic NeuronsNeurogenesisDopaminergicBrainNeural stem cellMice Mutant Strains3. Good healthnervous system diseases[SDV] Life Sciences [q-bio]adult neurogenesis030104 developmental biologychemistrynervous systemalpha-SynucleinFemaleNeuroscience030217 neurology & neurosurgerySnca knock-outmedicine.drug
researchProduct

Neural Stem Cell Regulation by Adhesion Molecules Within the Subependymal Niche

2019

In the mammalian adult brain, neural stem cells persist in neurogenic niches. The subependymal zone is the most prolific neurogenic niche in adult rodents, where residing stem cells generate large numbers of immature neurons that migrate into the olfactory bulb, where they differentiate into different types of interneurons. Subependymal neural stem cells derive from embryonic radial glia and retain some of their features like apico-basal polarity, with apical processes piercing the ependymal layer, and a basal process contacting blood vessels, constituting an epithelial niche. Conservation of the cytoarchitecture of the niche is of crucial importance for the maintenance of stem cells and fo…

0301 basic medicineMini Reviewextracellular matrixNicheBiologyQuiescenceAdult neurogenesis03 medical and health sciencesCell and Developmental Biologyneural stem cell0302 clinical medicineSubependymal zoneNicheSubependymal zoneadhesion moleculesquiescencelcsh:QH301-705.5Ecological nicheNeurogenesisCell BiologyExtracellular matrixEmbryonic stem cellNeural stem cellCell biologyOlfactory bulbadult neurogenesisniche030104 developmental biologylcsh:Biology (General)Neural stem cell030220 oncology & carcinogenesissubependymal zoneStem cellAdhesion moleculesDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

Physiological Interactions between Microglia and Neural Stem Cells in the Adult Subependymal Niche

2018

Microglia are the prototypical innate immune cells of the central nervous system. They constitute a unique type of tissue-resident mononuclear phagocytes which act as glial cells. Elegant experiments in the last few years have revealed the origin, extraordinary molecular diversity, and phenotypic plasticity of these cells and how their potential relates to both immune and non-immune actions in the normal and diseased brain. Microglial cells originate in the yolk sac and colonize the brain during embryogenesis, playing a role in neural development and later in adult brain function. Neurogenesis continues after birth in discrete areas of the mammalian brain sustained by the postnatal persiste…

Adult0301 basic medicineNeurogenesisCentral nervous systemCell CommunicationBiology03 medical and health sciences0302 clinical medicineImmune systemNeural Stem CellsmedicineSubependymal zoneAnimalsHumansStem Cell NicheNeuronsInnate immune systemMicrogliaGeneral NeuroscienceNeurogenesisBrainNeural stem cellAdult Stem Cells030104 developmental biologymedicine.anatomical_structureMicrogliaNeuroscienceNeural development030217 neurology & neurosurgeryNeuroscience
researchProduct

The aged brain: Genesis and fate of residual progenitor cells in the subventricular zone

2015

Neural stem cells (NSCs) persist in the adult mammalian brain through life. The subventricular zone (SVZ) is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the SVZ suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the NSC population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is no…

AgingRostral migratory streamRostral migratory streamNeurogenesisSubventricular zoneReviewBiologylcsh:RC321-571Cellular and Molecular NeurosciencemedicineSubependymal zoneCell migrationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryNeural stem cellsNeurogenesissubventricular zonesubventricular zone (SVZ)Neural stem cellNeuroepithelial cellmedicine.anatomical_structurenervous systemOligodendrogenesisStem cellNeuroscienceAdult stem cellNeuroscience
researchProduct

Telomere Shortening in Neural Stem Cells Disrupts Neuronal Differentiation and Neuritogenesis

2009

Proliferation in the subependymal zone (SEZ) and neurogenesis in the olfactory bulb decline in the forebrain of telomerase-deficient mice. The present work reveals additional effects of telomere shortening on neuronal differentiation, as adult multipotent progenitors with critically short telomeres yield reduced numbers of neurons that, furthermore, exhibit underdeveloped neuritic arbors. Genetic data indicate that the tumor suppressor protein p53 not only mediates the adverse effects of telomere attrition on proliferation and self-renewal but it is also involved in preventing normal neuronal differentiation of adult progenitors with dysfunctional telomeres. Interestingly, progenitor cells …

AgingTelomeraseRHOANeurogenesisNotch signaling pathwayBiologyMice03 medical and health sciencesFetus0302 clinical medicineNeuritesSubependymal zoneAnimalsTelomeraseCells Cultured030304 developmental biologyMice KnockoutNeuronsrho-Associated Kinases0303 health sciencesReceptors NotchStem CellsGeneral NeuroscienceNeurogenesisCell DifferentiationArticlesTelomereNeural stem cellOlfactory bulbTelomereMice Inbred C57BLAnimals Newbornbiology.proteinTumor Suppressor Protein p53Neuroscience030217 neurology & neurosurgerySignal TransductionThe Journal of Neuroscience
researchProduct

Mesenchymal stromal-cell transplants induce oligodendrocyte progenitor migration and remyelination in a chronic demyelination model.

2013

Demyelinating disorders such as leukodystrophies and multiple sclerosis are neurodegenerative diseases characterized by the progressive loss of myelin that may lead toward a chronic demyelination of the brain’s white matter, impairing normal axonal conduction velocity and ultimately causing neurodegeneration. Current treatments modifying the pathological mechanisms are capable of ameliorating the disease; however, frequently, these therapies are not sufficient to repress the progressive demyelination into a chronic condition and permanent loss of function. To this end, we analyzed the effect that bone marrow-derived mesenchymal stromal cell (BM-MSC) grafts exert in a chronically demyelinate…

Cancer ResearchPathologymedicine.medical_specialtyNeurogenesisImmunologyNeural ConductionBiologyMesenchymal Stem Cell TransplantationModels Biologicaltrophic releaseCuprizoneMiceCellular and Molecular NeuroscienceMyelinNerve FibersCell MovementmedicineSubependymal zoneAnimalsNerve Growth FactorsStem Cell NicheProgenitor cellRemyelinationMyelin Sheathdemyelinating mouse modelMultiple sclerosisMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsCell Biologymedicine.diseaseAxonsOligodendrocyteTransplantationDisease Models AnimalOligodendrogliaremyelinationmedicine.anatomical_structureChronic DiseaseDentate GyrusImmunologyoligodendrocyte activationOriginal Articlemesenchymal stromal cellsGenèticaDemyelinating Diseases
researchProduct

Regulated segregation of kinase Dyrk1A during asymmetric neural stem cell division is critical for EGFR-mediated biased signaling.

2010

SummaryStem cell division can result in two sibling cells exhibiting differential mitogenic and self-renewing potential. Here, we present evidence that the dual-specificity kinase Dyrk1A is part of a molecular pathway involved in the regulation of biased epidermal growth factor receptor (EGFR) signaling in the progeny of dividing neural stem cells (NSC) of the adult subependymal zone (SEZ). We show that EGFR asymmetry requires regulated sorting and that a normal Dyrk1a dosage is required to sustain EGFR in the two daughters of a symmetrically dividing progenitor. Dyrk1A is symmetrically or asymmetrically distributed during mitosis, and biochemical analyses indicate that it prevents endocyto…

Cell divisionMitosisProtein Serine-Threonine KinasesMiceNeural Stem CellsCell MovementGeneticsSubependymal zoneAnimalsHumansEpidermal growth factor receptorPhosphorylationMitosisProgenitorAdaptor Proteins Signal TransducingbiologyProtein StabilityIntracellular Signaling Peptides and ProteinsMembrane ProteinsCell BiologyProtein-Tyrosine KinasesSTEMCELLNeural stem cellCell biologyErbB ReceptorsStem cell divisionCancer researchbiology.proteinMolecular MedicineSignal transductionCell DivisionSignal TransductionCell stem cell
researchProduct